
Acta Cryst. (2006). A62, 11–20 doi:10.1107/S0108767305037657 11

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 20 October 2005

Accepted 15 November 2005

# 2006 International Union of Crystallography

Printed in Great Britain – all rights reserved

Reciprocal-space mapping of epitaxic thin films
with crystallite size and shape polydispersity

A. Boulle,* F. Conchon and R. Guinebretière
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A development is presented that allows the simulation of reciprocal-space maps

(RSMs) of epitaxic thin films exhibiting fluctuations in the size and shape of the

crystalline domains over which diffraction is coherent (crystallites). Three

different crystallite shapes are studied, namely parallelepipeds, trigonal prisms

and hexagonal prisms. For each shape, two cases are considered. Firstly, the

overall size is allowed to vary but with a fixed thickness/width ratio. Secondly,

the thickness and width are allowed to vary independently. The calculations are

performed assuming three different size probability density functions: the

normal distribution, the lognormal distribution and a general histogram

distribution. In all cases considered, the computation of the RSM only requires

a two-dimensional Fourier integral and the integrand has a simple analytical

expression, i.e. there is no significant increase in computing times by taking size

and shape fluctuations into account. The approach presented is compatible with

most lattice disorder models (dislocations, inclusions, mosaicity, . . . ) and allows

a straightforward account of the instrumental resolution. The applicability of the

model is illustrated with the case of an yttria-stabilized zirconia film grown on

sapphire.

1. Introduction

X-ray diffractometry (XRD), and especially reciprocal-space

mapping, are widely used for the analysis of the structural

characteristics of epitaxic thin films. The quantitative

comparison of calculated reciprocal-space maps (RSMs) with

experimental data allows one to obtain a detailed description

of the defect structure, for instance in terms of dislocations

(Holý et al., 1995; Kaganer et al., 1997), inclusions (Nesterets &

Punegov, 2000) or mosaicity (Holý et al., 1994). In that type of

study, attention is primarily focused on the determination of

the nature and the density of the defects present in the film,

with little or no consideration for size effects induced by the

finite extension (mainly in the in-plane direction) of the

crystallites1 building up the film. This is justified as long as the

aforementioned size effects are negligible compared with

lattice disorder effects induced by the defects, say for crys-

tallite sizes larger than a few hundred nanometres. In such a

case, size effects can be either neglected (i.e. one assumes

laterally infinite crystallites) or accounted for by using crude

descriptions of the crystallite shape, e.g. spheres or paral-

lelepipeds with edges parallel to the diffraction plane.

However, with the ever-growing interest in nanostructured

crystalline materials, size effects become prominent, so that

the obtaining of reliable information concerning the defect

structure of thin films requires an accurate description of the

crystallite shape. Moreover, the determination of the actual

shape of the crystallites is a fundamental task by itself since

the shape of the crystallites significantly affects the properties

of nanostructured materials (Gleiter, 2000). In this field, the

most significant developments have been achieved for later-

ally patterned semiconductor nanostructures (Pietsch et al.,

2004; Schmidbauer, 2004), which exhibit a high degree of size

and shape regularity. Most thin-film systems, however, espe-

cially imperfect thin films, exhibit a more or less pronounced

degree of size and shape polydispersity that drastically affects

the intensity distribution (mainly by suppressing interference

fringes). Hence, besides the determination of size distributions

by XRD, which constitutes an important task by itself, the

analysis of strain in thin films also requires a careful account of

size and shape fluctuations. An important issue on the way is

that a complete two-dimensional intensity distribution has to

be calculated for each crystallite size (and/or shape) and these

distributions have then to be added according to a given

probability density function (PDF), which obviously results in

increased computing times. The importance of this effect for

the study of strain in thin films (especially imperfect

thin films) has been pointed out recently, either by using an

approximate treatment involving two crystallite sizes

(Kirste et al., 2005) or by using a complete size distribution

but with an analysis restricted to one-dimensional profiles

(Boulle et al., 2003; Boulle, Guinebretière, Masson et al.,

2005).

1 Throughout the paper, the term crystallite is used to designate the crystalline
domains over which diffraction is coherent, i.e. the amplitudes are added.
Between different crystallites, the intensities are added.



In this work, we present a new development that allows size

and shape fluctuations to be readily taken into account in the

simulation of RSMs without requiring additional lengthy

numerical evaluations compared with the ideal case with

regular size and shape. The paper is organized as follows. In x2,

we briefly recall the basic equations of the kinematical theory

of diffraction from epitaxic thin films. In x3, the influence of

particular crystallite shapes on RSMs is discussed, and, in xx4

and 5, we address the effects of size and shape fluctuations. In

the last section, the compatibility of our approach with

existing defect models is discussed, and its applicability is

tested using an example related to recent experiments on

yttria-stabilized zirconia films grown on sapphire.

2. X-ray diffraction from thin films

In the following, the derivation is carried out in the framework

of the kinematical theory of diffraction, which is justified for

nanostructured materials studied at non-grazing angles

(Pietsch et al., 2004). This assumption also ensures the

compatibility of our approach with many existing models of

lattice disorder, which in general make use of the kinematical

approximation (Holý et al., 1994; 1995; Kaganer et al., 1997,

2005; Nesterets & Punegov, 2000). Moreover, this theory

allows an easier handling of the expression of the diffracted

intensity than the, though more rigorous, dynamical theory

(Authier, 2005). For simplicity, as often assumed in similar

studies, we neglect the scattering from the substrate. If this

assumption turns out to be unjustified, then the contribution

of the substrate must be taken into account either by adding

the amplitudes, if the film and substrate scatter coherently, or

by adding the intensities in the opposite case. With this

simplification, the intensity diffracted in the vicinity of the

reflection with reciprocal-lattice vector h reads (Pietsch et al.,

2004)

IðqÞ ¼
R R

dr d�r �ðrÞ�ðrþ�rÞ expfih½uðrþ�rÞ � uðrÞ�g

� expðiq�rÞ;

where u(r) is the lattice displacement at the point r, �r is a

vector joining two points r and r0 in the film, q is the deviation

of the scattering vector Q from the Bragg position (q = Q� h)

and �(r) is the crystallite shape function. �(r) describes the

shape of the crystalline domains over which diffraction is

coherent, i.e. �(r) = 1 within a domain and �(r) = 0 outside. In

the case of continuous films, which are in general built of

grains separated by grain boundaries, �(r) can safely be

considered as the grain shape function. In the case of

discontinuous (islanded) films, �(r) can be considered as the

island shape function only if different islands diffract inco-

herently, otherwise �(r) must contain information concerning

both the island shape and the spatial distribution of the

islands. In the present study, we are mainly interested in

imperfect thin-film systems, we shall therefore not consider

the latter case. As mentioned earlier, specific treatments have

been developed for high-quality laterally patterned nano-

structures (Pietsch et al., 2004; Schmidbauer, 2004), this point

is therefore out of the scope of this paper. Let us first assume a

statistically homogeneous sample (we discuss this assumption

in x6). In such a case, the choice of the origin is unimportant

and the exponential involving u(r) can be replaced by its

statistical average performed over the defect distribution,

Gð�rÞ ¼ hexpfih½uð�rÞ � uð0Þ�gi: ð1Þ

In the following, we conform to the usual terminology and

refer to G(�r) as the pair correlation function. The integral

over r hence only implies �(r) and can be written V(�r) =

�(�r) � �(��r), which is the autocorrelation function of

�(r) (� denotes the convolution operator). We shall refer to

V(�r) as the correlation volume. Throughout the paper, we

adopt the common notation where the z axis is chosen

perpendicular to the film surface, the x axis is parallel to the

projection of the incident beam in the film plane and the y axis

is chosen perpendicular to the plane defined by x and z (the

diffraction plane). We now take into account the fact that in

most X-ray diffractometers the beam is not collimated

perpendicularly to the diffraction plane. The expression for

the diffracted intensity must hence be integrated over qy,

which gives rise to the delta function �(y). We then obtain

Iðqx; qzÞ ¼
R R

dx dz Vðx; 0; zÞhexpfih½uðx; 0; zÞ � uð0; 0; 0Þ�giy

� exp½iðqxxþ qzzÞ�; ð2Þ

where x, y, z are the components of the vector �r and the

subscript y indicates that the average has to be performed in

all planes with equation y = 0. We show below that the effect of

size and shape polydispersity can be simply accounted for by

replacing the correlation volume V(x, 0, z) with an averaged

correlation volume hV(x, 0, z)i that can be calculated analyt-

ically in many relevant cases, i.e. there is no need for addi-

tional numerical integrations. We now return to equation (2)

and evaluate the correlation volume for a simple case, namely

a parallelepiped with edges parallel to the diffraction plane

and with dimensions X � Y � Z. We directly obtain the well

known result V(x, y, z) = (X � |x|)(Y � |y|)(Z� |z|). When y =

0, the intensity is proportional to Y, i.e. it is proportional to the

number of lattice planes in the y direction so that in the

scattering process the sample can be considered as being

divided into (x, z) lattice planes that diffract incoherently with

respect to each other. This is analogous to the ‘column model’

referred to in powder diffraction (Warren, 1969). Because of a

two-dimensional integration perpendicular to Q, in powder

diffraction one speaks of columns instead of planes. It should

be noticed that in the field of powder diffraction the integra-

tion arises because of the random orientation of the crystal-

lites, whereas in the present case the integration arises from a

lack of resolution in the direction perpendicular to the

diffraction plane. This approach is correct only if the diver-

gence of the scattered radiation is much smaller than the

divergence of the incident beam (and/or the acceptance of the

detector), for instance if the mosaicity is much smaller than

the divergence of the incident beam. This is actually the case

for most thin-film systems studied on laboratory X-ray

diffractometers. However, even in the case of thin films
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exhibiting a mosaicity larger than the divergence of the inci-

dent beam, the qy integration is ensured by the angular

disorientation of the crystallites (similarly to powder diffrac-

tion) and equation (2) is equally valid. Hence, the present

approach does not hold only in the case of thin films exhibiting

a very low mosaicity studied with an incident beam collimated

perpendicularly to the diffraction plane, so that the qy inte-

gration cannot be ensured.

A geometrical interpretation of the correlation volume is

shown in Fig. 1. The correlation volume corresponds to the

common volume between a crystallite and the same crystallite

shifted by �r. In the field of powder diffraction, this is known as the ‘ghost’ concept (James, 1967). In powder diffraction, �r

is necessarily collinear to Q, whereas in the present case it can

lie along any direction in the (x, z) plane. The intensity is then

obtained by adding the intensities of all (x, z) planes contained

in the correlation volume and for all possible correlation

volumes. For a differently oriented crystallite, or for crystal-

lites with a different shape (Fig. 1b), the planes contained in

the correlation volume will exhibit different sizes. It can be

expected that this will affect the diffracted intensity. We

discuss this point in the next section.

3. The correlation volume of common shapes

The grains building up thin films are in general highly aniso-

tropic. Their description hence requires at least two-dimen-

sional parameters: an in-plane (IP) dimension, D, and an out-

of-plane (OOP) dimension, t, which we shall write as a func-

tion of the grain aspect ratio f, t = fD. If diffraction is coherent

across the film thickness, t corresponds to the film thickness,

otherwise t simply corresponds to the crystallite size in the

OOP direction. With these definitions, it turns out that the

correlation volume of many experimentally relevant cases can

be written as a polynomial of third degree, a3D3 + a2D2 + a1D +

a0, where the coefficients an are functions of the crystallite

shape, of the coordinates x, y, z and of the orientation (defined

by the angle �) of the crystallite with respect to the diffraction

plane. For instance, for spherical crystallites with diameter D,

a3 = �/6, a2 = ��(x2 + z2)1/2/4, a1 = 0 and a0 = �(x2 + z2)3/2/12

(Pietsch et al., 2004). We shall assume that the grains exhibit a

flat top and vertical sides. In principle, this assumption is not

necessary, but it indeed corresponds to a case frequently

encountered in practice and it will also simplify the discussion
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Figure 1
(a) Correlation volume for a parallelepiped with a correlation vector �r.
Because of the lack of resolution in the y direction, the correlation
volume is ‘divided’ into lattice planes diffracting incoherently and parallel
to the (x, z) plane. Moreover, �r is constrained to lie in the (x, z) plane.
(b) Same as (a) for a cylindrical shape. The lattice planes now have
different sizes.

Table 1
Values of the coefficients bn and the parameter k for parallelepipeds.

The notation �[x] means � modulo x. � is the in-plane aspect ratio of the
parallelepiped, i.e. � = Dy/Dx.

�[�] � �/2 �[�] > �/2

b2 � �
b1 �x(� cos � + sin �) �x(� sin � + cos �)
b0 x2 cos � sin � x2 cos � sin �

� � atan(�) � > atan(�) � � � � atan(�) � > � � atan(�)

k 1/cos � �/sin � �/cos � 1/sin �

Table 2
Values of the coefficients bn and the parameter k for trigonal prisms.

The notation �[x] means � modulo x.

�[�/3] � �/6 �[�/3] > �/6

b2 31/2/4 31/2/4
b1 �x sin(�/2 � �[�/3]) �x sin(�/6 + �[�/3])
b0 x2 sin2(�/2 � �[�/3])/31/2 x2 sin2(�/6 + �[�/3])/31/2

k 31/2/(2 cos �[�/3]) cos(�[�/3] � �/6)

Table 3
Values of the coefficients bn and the parameter k for hexagonal prisms.

The notation �[x] means � modulo x.

x � D31/2/(cos �[�/3]
+ 31/2 sin �[�/3])

x > D31/2/(cos �[�/3]
+ 31/2 sin �[�/3])

b2 3 � 31/2/2 2 � 31/2

b1 �2x cos �[�/3], �x31/2(sin �[�/3] + 31/2 cos �[�/3])
b0 �x231/2{sin2�[�/3]

� (1/3) cos2�[�/3]}/2
x2 cos �[�/3](cos �[�/3]

+ 31/2 sin �[�/3])/31/2

�[�/3] � �/6 �[�/3] > �/6 �[�/3] � �/6 �[�/3] > �/6

k 31/2/cos �[�/3] 2 cos(�[�/3] � �/6) 31/2/cos �[�/3] 2 cos(�[�/3] � �/6)



in x6 where samples exhibiting two-dimensional statistical

homogeneity will be considered. The shape factor can then be

written �(x, y, z) = �(x, y)�(z) and the correlation volume

can hence be written as a product of two polynomials, (b2D2 +

b1D + b0)(c1D + c0). Since the crystallites are flat, it is obvious

that c1D + c0 = t � |z| for |z| � t and 0 otherwise, which

corresponds to the Fourier transform of t2 sinc2(qzt/2). The bn

coefficients depend on the IP crystallite shape, the coordinate

x and the angle �. We derived the expression for the corre-

lation volume of parallelepipeds, trigonal prisms and hexa-

gonal prisms. The corresponding expressions for the bn

coefficients are given in Tables 1–3 [for hexagonal prisms,

details can also be found in Vargas et al. (1983)]. The

expression of the correlation volume can be derived geome-

trically for other experimentally relevant cases using the ghost

concept.

The RSMs associated with the corresponding shapes can be

calculated using equation (2). In principle, the bounds of the

integral are�1. However, since the correlation volume drops

to zero above particular values of x and z (this can be

straightforwardly understood from Fig. 1), for practical

purposes it is useful to use those finite bounds. In the OOP

direction, this bound is equal to the thickness t, whereas in the

IP direction it depends both on the crystallite size and the

angle �, and we shall denote that bound kD (the corre-

sponding values of k are given in Tables 1–3). Computed

RSMs are shown in Fig. 2 for each of the considered shapes

and for two different orientations �. All crystallites have the

same volume 20 � 20 � 20 nm3 and the same thickness. In the

OOP direction, the thickness (interference) fringes of the sinc2

function are clearly visible and are obviously independent of

the IP orientation. In the IP direction, perfect sinc2 fringes are

only visible for the parallelepiped when � = 0, i.e. when the

parallelepiped is parallel to the diffraction plane. For all other

orientations or crystallite shapes, the fringe structure is

profoundly affected by the size variation of the (x, z) lattice

planes (Fig. 1b). Fringes are still visible for the hexagonal

prism at � = 0, but they are almost completely absent for the

other cases. The lack of fringes hence does not necessarily

imply the existence of lattice disorder or fluctuations of the

crystallite size. It may simply be induced by the shape of the

crystallites. We now investigate the effects of size fluctuations.

4. Influence of size fluctuations

4.1. Averaged correlation volume

When the size of the domains over which diffraction is

coherent is allowed to vary, the total diffracted intensity

results from the addition of the intensities diffracted by

different domains. This is written

Iðqx; qzÞ ¼
R1
0

dD pðDÞ
RkD

�kD

RfD
�fD

dx dzVðx; 0; zÞGðx; 0; zÞ

� exp½iðqxxþ qzzÞ�; ð3Þ

where p(D) is the PDF of the variable D. We now change the

order of integration and assume that the pair correlation

function G(x, 0, z) is independent of the crystallite size (we

discuss this assumption in x6). We obtain

Iðqx; qzÞ ¼
R1
�1

R1
�1

dx dz hVðx; 0; zÞiGðx; 0; zÞ exp½iðqxxþ qzzÞ�

ð4aÞ

and

hVðx; 0; zÞi ¼
R1

Dmin

dD pðDÞVðx; 0; zÞ: ð4bÞ

Equation (4) is equivalent to equation (2) except that the

correlation volume is replaced by an averaged correlation
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Figure 2
Calculated RSMs for different crystallite shapes and orientations.
(a) Square parallelepiped with angle relative to the diffraction plane
� = 0. (b) Square parallelepiped with � = 45�. (c) Trigonal prism with � =
0. (d) Trigonal prism with � = 30�. (e) Hexagonal prism with � = 0.
( f ) Hexagonal prism with � = 30�. All crystallites have the same volume
(20 � 20 � 20 nm3) and the same height. In each figure, the inset
represents the in-plane orientation of the crystallite with respect to the
diffraction plane (marked as a dotted line).



volume. Equation (4) can be qualitatively interpreted as

follows: for a given correlation vector (i.e. given x and z), add

the intensities of all (x, z) planes contained in the correlation

volume, but contrary to equation (2), where this summation is

restricted to one crystallite, in equation (4), the planes

contained in different crystallites must be considered.

However, a crystallite with dimensions D or t smaller than x/k

or z/f, respectively, cannot contain a particular (x, z) plane. An

obvious example is a parallelepiped with IP dimension D < x:

it cannot contain a particular (x, z) plane, even if t > z. The

lower bound in equation (4b) is therefore Dmin = max(x/k, z/f).

With the polynomial defined in the previous section, the

averaged correlation volume can finally be written

hVðx; 0; zÞi ¼
P3

n¼0

an

R1
Dmin

dD pðDÞDn: ð5Þ

4.2. Size distributions

The integral in equation (5) can be evaluated analytically

for many experimentally relevant cases. In the following, we

shall consider the normal (Gaussian) and the lognormal

distributions, which are broadly used in practice to model size

distributions in nanocrystalline systems. These functions are

defined as follows: for the Gaussian with mean � and variance

�2,

pNðDÞ ¼
1

ð2�Þ1=2�
exp � 1

2

D� �

�

� �2
" #

and for the lognormal distribution with lognormal mean �LN

and variance �2
LN,

pLNðDÞ ¼
1

ð2�Þ1=2D�LN

exp � 1
2

ln D� �LN

�LN

� �2
" #

:

The parameters �LN and �LN are related to � and � by � =

exp(�LN + �2
LN/2) and �2 = exp(2�LN + �2

LN)[exp(�2
LN) � 1].

However, these functions may fail to correctly describe

particular distributions (for instance bimodal distributions), so

we shall therefore also consider histogram distributions (Fig.

3) which can be directly obtained by complementary imaging

techniques (e.g. atomic force microscopy, or transmission or

scanning electron microscopy). It is worth noticing that the

Gaussian distribution must be used carefully. Indeed, for a

mean size � smaller than 3�, negative sizes occur in the

distribution. To avoid this, the Gaussian distribution has to be

constrained with the condition � < �/3. After straightforward

but tedious calculations, the averaged correlation volume

follows, for the Gaussian PDF,

hVðx; 0; zÞi ¼ 1
2 erfc

Dmin � �

21=2�

� �
½a3ð�

3
þ 3��2

Þ þ a2ð�
2
þ �2
Þ

þ a1�þ a0� þ
�

ð2�Þ1=2
exp �1

2

Dmin � �

�

� �� �
� ½a3ðD

2
min þ �Dmin þ �

2 þ 2�2Þ

þ a2ðDmin þ �Þ þ a1�;

and, for the lognormal PDF [a similar equation was given in

the field of powder diffraction by Scardi & Leoni (2001)],

hVðx; 0; zÞi ¼ 1
2

X3

n¼0

an exp n�LN þ n2 �
2
LN

2

� �

� erfc
ln Dmin � �LN � n�2

LN

21=2�LN

� �
:

For the histogram distribution defined in Fig. 3, we obtain

hVðx; 0; zÞi ¼
XM

m¼0

ðpm � pmþ1Þ
X3

n¼0

an

nþ 1
D0nþ1

m ;

where M is the number of size classes and D0m =

max(Dm, Dmin). The following constraints are needed: p0 =

pM+1 = 0 and pi<m = 0 if Dm < Dmin.

Calculated RSMs for increasing size fluctuations are shown

in Fig. 4. The effects of a size distribution on the RSM is more

easily evidenced with a parallelepipedic crystallite shape, we

therefore only show the results for this particular case.

However, similar effects are observed for other shapes. When

the variance increases, the most striking feature is the

broadening of the thickness fringes in the radial direction with

respect to the centre of the reciprocal-lattice point. The

broadening is more pronounced for large deviations from the

Bragg position so that high-order fringes are completely

smeared out for increasing � (Figs. 4b, c). For high values of �
(Figs. 4c, d), the fringes are completely damped and the main

peak is significantly narrower than for � = 0. The calculation is

here performed for a lognormal distribution of size. For not

too large a variance (i.e. � < �/3), the Gaussian and the

lognormal distributions give very similar results. However, the

lognormal is more versatile that the Gaussian since the latter is

constrained to have � < �/3 to avoid negative sizes, whereas

the former, which is asymmetric, allows for much larger values

of �.

5. Size and shape fluctuations

There are some cases where the above model, i.e. a single size

distribution, is not sufficient to describe the microstructure of

actual thin films. This is for instance the case of films subjected

to post-deposition thermal annealing. Those films undergo

significant IP grain growth, whereas OOP grain growth does
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Figure 3
Histogram distribution, with M size classes and associated probabilities
pm.



not occur (Thomson, 1990). For such films, the aspect ratio, f =

t/D, is not constant and two distributions (IP and OOP) are

needed to model the microstructure correctly. In equation (3),

an integration over t must hence be added. Changing the order

of integration, we obtain [assuming again that G(x, 0, z) is

independent of D and t]

Iðqx; qzÞ ¼
R1
�1

R1
�1

dx dz hVðx; 0ÞihVðzÞiGðx; 0; zÞ

� exp½iðqxxþ qzzÞ� ð6aÞ

and

hVðx; 0Þi ¼
R1

x=k

dD pðDÞVðx; 0Þ ð6bÞ

hVðzÞi ¼
R1
z

dt pðtÞVðzÞ: ð6cÞ

As above, equations (6b) and (6c) can be solved analytically.

We obtain for the Gaussian PDF

hVðx; 0Þi ¼ 1
2 erfc

Dmin � �D

21=2�D

� �
½b2ð�

2
D þ �

2
DÞ þ b1�D þ b0�

þ
�D

ð2�Þ1=2
exp �1

2

Dmin � �D

�D

� �� �
� ½b2ðDmin þ �DÞ þ b1�

hVðzÞi ¼ 1
2 erfc

z� �t

21=2�t

� �
½c1�t þ c0�

þ
�t

ð2�Þ1=2
exp �1

2

z� �t

�t

� �� �
:

For the lognormal PDF, this becomes

hVðx; 0Þi ¼ 1
2

X2

n¼0

bn exp n�D;LN þ n2 �D;LN

2

� �

� erfc
ln Dmin � �D;LN � n�2

D;LN

21=2�D;LN

� �

hVðzÞi ¼ 1
2

X1

n¼0

cn exp n�t;LN þ n2 �t;LN

2

� �

� erfc
ln Dmin � �t;LN � n�2

t;LN

21=2�t;LN

� �
:

For the histogram distribution, this becomes

hVðx; 0Þi ¼
XM

m¼0

ðpm � pmþ1Þ
X2

n¼0

bn

nþ 1
D0nþ1

m

hVðzÞi ¼
XM

m¼0

ðpm � pmþ1Þ
X1

n¼0

cn

nþ 1
t0nþ1
m :

In the above expressions, �D and �D (�t and �t) refer to the

mean and square root of the variance of the PDF of the IP

dimension D (of the OOP dimension t).

Calculated RSMs are displayed in Fig. 5 with the same

parameters as in Fig. 4. It appears that the fringe structure is

highly sensitive to the simultaneous presence of size and shape

fluctuations. Indeed, since there are two distributions acting

independently in the IP and OOP directions, the fringes are

now broadened along these directions instead of the radial

direction. In particular, the inclined streak running parallel to

the diagonal of the parallelepiped is completely absent in the

present case. Calculated RSMs of thin films exhibiting aniso-

tropic size fluctuations are displayed in Figs. 5(e) and 5( f). Fig.

5(e) corresponds to a film with significant (� = �/3) OOP size
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Figure 4
(a)–(d) Calculated RSMs of a film made of parallelepipedic crystallites
lognormally distributed with average dimensions � � � � � (� = 20 nm)
and increasing variance �2. (a) � = �/12, (b) � = �/6, (c) � = �/3, (d) � =
�/2. (e) Corresponding size distributions. Increasing � results in the
broadening of the fringes in the radial direction with respect to the Bragg
position qx = qz = 0. The broadening increases with increasing qx and qz,
i.e. high-order fringes are more affected. For high � values, the fringes are
completely smeared out.



fluctuations and negligible IP fluctuations, whereas Fig. 5( f)

corresponds to a significant IP size fluctuation and negligible

OOP fluctuation. The latter case is expected to be particularly

useful since actual RSMs often display pronounced thickness

fringes in the OOP direction whereas no such fringes are

observed in the IP direction.

All the above presented RSMs imply the computation of a

two-dimensional Fourier integral, i.e. there is no significant

increase in computing times by taking size and shape fluc-

tuations into account. However, actual thin films not only

exhibit size and shape fluctuations but they also exhibit lattice

disorder. The approach presented here will be useful for

practical use only if it is compatible with existing models of

lattice disorder. We discuss this point in the following section.

6. Discussion and applications

In deriving the expression for the diffracted intensity of a thin

film exhibiting crystallite size fluctuations [equation (4)] or

size and shape fluctuations [equation (6)], two major

assumptions were made. Firstly, three-dimensional statistical

homogeneity is required, otherwise the diffracted intensity

cannot be written as the Fourier transform of the product of

two terms [one term containing information concerning crys-

tallite size and shape, and the other term describing lattice

disorder, equation (2)]. Secondly, the pair correlation function

G(x, 0, z) describing lattice disorder has to be independent of

the crystallite size, otherwise the diffracted intensity cannot be

written as the Fourier transform of the product of two terms

[one term containing information concerning crystallite size

and shape and their fluctuations, and the other term describing

lattice disorder, equations (4) and (6)]. An important conse-

quence of this last assumption is that the present approach

does not account for correlations between the crystallite size

and its state of disorder. If G(x, 0, z) is indeed dependent on

the crystallite size then equation (3) has to be evaluated

numerically, which obviously results in increased computing

times.

The first assumption implies that the defects are randomly

distributed throughout the film volume. Disorder models

fulfilling this condition were given for inclusions, dislocation

loops and stacking faults [for a recent review, see Pietsch et al.

(2004) and references therein] as well as for threading dislo-

cations [for a recent review, see Kaganer et al. (2005) and

references therein]. For these defects, it can be reasonably

assumed that the second assumption is valid as long as the

defect size is much smaller than the crystallite size (Pietsch et

al., 2004). An important model of defects is the well known

mosaic block model. Although this model is in general only a

rough approximation of the actual state of strain in thin films

(compared to the aforementioned models), this model has

proven to be particularly useful because of its straightfor-

wardness, especially in the case of materials where the actual

defect structure is not well known. It is useful to express the

mosaicity in terms of the components of the heterogeneous

strain tensor (Ratnikov et al., 2000), ("xz � "zx)/2, which we

shall write as "ðMÞzx , where the superscript M stands for

mosaicity. The symmetric part of the heterogeneous strain

tensor, ("xz + "zx)/2, corresponds to shear strain, which we shall

denote as "ðSÞzx . The statistical average in equation (1) is often

performed in the framework of the central limit theorem, i.e.

assuming a Gaussian PDF. However, the Gaussian distribution

is known to fail in some cases (Boulle, Guinebretière &

Dauger, 2005), and in particular it is unable to account for

XRD profiles exhibiting power-law-type tails. We recently

suggested the use of Lévy-stable distributions to perform this

average (Boulle, Guinebretière, Masson et al., 2005; Boulle,

Guinebretière & Dauger, 2005). Lévy-stable distributions

arise in the framework of the generalized central limit theorem

(Feller, 1970) and they are in general defined using their

characteristic function, hexp(ikr)i, where r and k are real- and
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Figure 5
(a)–(d) Calculated RSMs of a film made of parallelepipedic crystallites
lognormally distributed with average dimensions �D � �D � �t (�D =
�t = 20 nm) and increasing variance �2

D and �2
t . (a) �D = �t =�/12, (b) �D =

�t = �/6, (c) �D = �t = �/3, (d) �D = �t = �/2, (e) �D = �/12 and �t = �/3,
( f ) �D = �/3 and �t = �/12. Increasing � results in the broadening of the
fringes parallel to qx and qz. The broadening increases with increasing qx

and qz, i.e. high-order fringes are more affected. For high � values, the
fringes are completely smeared out.



reciprocal-space variables, respectively. For symmetrical Lévy-

stable distributions, it turns out that (Nolan, 1998)

hexpðikrÞi ¼ expði�kÞ expð� 1
2 �

� jkj�Þ

where � 2 ]�1,1[ is the mode of the distribution, � 2 [0,1[

is the characteristic width (for instance it corresponds to the

square root of the variance of the Gaussian distribution or to

the full width at half-maximum of the Lorentzian distribution)

and � 2 ]0, 2] is the tail index that defines the tail behaviour of

the distribution (for instance � = 2 for the Gaussian distri-

bution, � = 1 for the Lorentzian distribution). The case of

general Lévy-stable distributions (i.e. asymmetrical distribu-

tions) has been presented elsewhere (Boulle, Guinebretière,

Masson et al., 2005). With this definition and assuming that the

components of the strain tensor are statistically independent,

the correlation function can be written

Gðx; 0; zÞ ¼ expfi½�eexxhxxþ �eezzhzzþ �eeðSÞxz ðhxzþ hzxÞ

þ �eeðMÞxz ðhxz� hzxÞ�g expf� 1
2 ½"

�
xxjhxxj� þ "�z jhzzj�

þ "ðSÞ�xz jhxzþ hzxj� þ "ðMÞ�xz jhxz� hzxj� �g; ð7Þ

where e� ij are the components of the homogeneous strain

tensor (which correspond to the mode of the PDF of the strain

eij) and "ij are the components of the heterogeneous strain

tensor (which correspond to the characteristic width of the

PDF of the strain eij). For the Gaussian PDF (� = 2), one

obtains the same result as in Holý et al. (1995). This expression

of G(x, 0, z) can be used in combination with equations (4) or

(6) to model RSMs of imperfect materials.

The case of misfit dislocations, which is of primary impor-

tance in the study of thin-film structures, does not fulfil both

of the above-mentioned assumptions. Indeed, in such a case,

straight dislocations parallel to a particular crystallographic

direction are randomly distributed at the film/substrate inter-

face so that statistical homogeneity can only be assumed in the

IP direction. Moreover, the displacement field associated with

misfit dislocations strongly depends on the film thickness

(Kaganer et al., 1997) and therefore so does G(x, 0, z).

Equation (4) can, hence, not be used. However, the case of

size and shape fluctuations (x5) can be modified so as to be

compatible with two-dimensional statistical homogeneity.

Equation (6) then becomes

Iðqx; qzÞ ¼
R1
�1

R1
�1

dx dz exp½iðqxxþ qzzÞ�hVðx; 0Þi

�
Rt
0

dz0�ðzþ z0Þ�ðz0ÞGðx; 0; z; z0Þ: ð8Þ

For simplicity, we assumed that the film thickness is constant,

i.e. p(t) = �(t � hti). Thickness fluctuations can be taken into

account but at the expense of a considerable increase in

computing times2 as mentioned earlier. It should be stressed

that the displacement field induced by misfit dislocations has

been derived by Kaganer et al. (1997) assuming a laterally

infinite film. The existence of the �(x, 0) term violates this

assumption. Equation (8) must hence be used carefully when

dealing with misfit dislocations. In particular, the crystallites

should be laterally much larger than the lateral extension of

the strain field around a dislocation. Finally, equation (8) can

be used to model RSMs of thin films containing strain gradi-

ents. In such a case, the pair correlation function G(x, 0, z, z0)

contains a specific expression of the displacement profile, e.g. a

polynomial or a power-law profile, or, as recently suggested

(Boulle et al., 2003), an adaptative profile based on cubic

B-spline functions.

To illustrate the applicability of the approach presented, we

calculate the RSM of the 200 reflection of a (100)-oriented

yttria-stabilized zirconia (YSZ) film deposited onto (0001)

sapphire. The film has been deposited by sol–gel dip coating

followed by high-temperature thermal annealing treatments

(1 h at 873 K and 1 h at 1773 K). Details concerning sample

elaboration can be found elsewhere (Boulle, Guinebretière,

Masson et al., 2005). Atomic force microscopy (AFM)

revealed that the film is made of roughly cylindrical islands

with diameter ~150 nm and thickness ~20 nm. (200) and (400)

RSMs were recorded with a high-resolution diffractometer

allowing fast RSM acquisition (Boulle et al., 2002; Masson et

al., 2005). IP (qx) and OOP (qz) line scans were extracted and

analysed using the approach presented in this work. To

perform the simulation, the cylinders were approximated with

hexagonal prisms with a lognormal diameter PDF and a

normal thickness PDF. The parameters obtained from this

analysis were then used as input to calculate the RSM (Fig. 6).

The agreement with the experimental RSM is very good which

therefore validates the parameters obtained from the simu-

lation of line scans. The diameter and thickness distribution

are depicted in Figs. 6(c) and 6(d). The average island

diameter is 127 nm and the square root of the variance of the

diameter distribution is 18 nm. The average island thickness is

17 nm and the square root of the variance of the thickness

distribution is 5 nm. These dimensions are in close agreement

with AFM observations. A peculiarity of this sample is that it

contains localized strain fields, i.e. distorted regions with

limited spatial extension. This feature is responsible for the

occurrence of a two-component intensity distribution made of

a narrow coherent (Bragg) scattering peak and a broad diffuse

scattering peak. The coherent peak (labelled C in Fig. 6) arises

from long-range order inherent in crystalline materials

(Krivoglaz, 1969) and its shape therefore only depends on size

and shape effects. The coherent peak is streaked in the qz

direction because of the limited film thickness, whereas it is of

limited extension in the qx direction because of the larger

dimensions of the crystallites in this direction. On the contrary,

the diffuse peak (labelled D) depends on both size and

disorder effects and it hence significantly extends in the qx

direction. Both features are clearly reproduced in the calcu-

lated RSM. For clarity, a qx scan performed through the centre

of the 200 and 400 reflections is also reported (Fig. 6e) toge-

ther with calculated profiles. It must be emphasized that,

contrary to size and shape effects, the effects of lattice disorder

on the scattered intensity depend on the length of the
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2 Notice that equation (8) contains three integrals and that G(x, 0, z, z0) also
implies a numerical evaluation in the case of low dislocation densities
(Kaganer et al., 1997). In the case of high dislocation densities, G(x, 0, z, z0) 	
G(x, 0, z) and one straightforwardly obtains equation (6).



reciprocal-lattice vector h. It is therefore important to analyse

(at least) two RSMs corresponding to different reciprocal-

lattice vectors in order to recover the actual h dependence of

lattice disorder effects. In the present case, the exact nature of

the defect giving rise to the two-component profile is not

known. To account for the existence of a two-component line

profile, the effects of strain were hence described with the pair

correlation function given by equation (7) and the strain

component, "xz, was written in a functional form that includes

a correlation length above which the lattice displacements do

not accumulate any more, i.e. the strain drops to zero. It can be

observed that both the 200 and 400 profiles are very well

described with this model. The corresponding distribution of

"xz is displayed in Fig. 6( f). It is striking to notice that the

lattice displacements accumulate up to x ’ 17 nm, which

corresponds to the island thickness. Such a behaviour has

already been reported for misfit dislocations in epitaxic thin

films (Miceli et al., 1996). Further details on that topic can be

found elsewhere (Boulle, Guinebretière, Masson et al., 2005;

Boulle, Guinebretière & Dauger, 2005).

Finally, the resolution of the diffractometer can be

straightforwardly incorporated in the analysis by convoluting

the intensity distribution with the two-dimensional resolution

function of the diffractometer, R(qx, qz). Since equations (4)

and (6) are two-dimensional Fourier transforms, this convo-

lution is readily performed by multiplying the integrand of

equations (4) and (6) with the Fourier transform of R(qx, qz).

7. Conclusions

The crystalline domains over which diffraction is coherent

(crystallites) in actual thin films are rarely of constant size and

shape. We have presented an approach that allows size and

shape fluctuations to be accounted for in the simulation of

RSMs of epitaxic thin films. The derivation is carried out in the

framework of the kinematical theory of diffraction. An

important result is that the expression of the two-dimensional

intensity distribution has the form of a two-dimensional

Fourier transform whatever the case considered: constant size

and shape, size fluctuations only, or size and shape fluctua-

tions. Consequently, since the integrand of the Fourier integral

has a simple analytical expression in all cases, there is no

increase in computing times by taking size and shape fluc-

tuations into account. The major assumptions made in the

derivation are the same as those usually made (more or less

implicitly) in the analysis of the defect structure of thin films

by means of X-ray diffraction. Our approach is therefore

compatible with most models of lattice disorder and should

therefore be particularly useful for the analysis of imperfect

thin-film structures which, in addition to significant lattice

disorder, also exhibit crystallite size and shape fluctuations.

Moreover, the instrumental resolution can be straightfor-

wardly included in the analysis. The applicability of the model

was tested with an epitaxic film of (100)-oriented YSZ made of

cylindrical islands with fluctuating thickness and diameter and

containing localized strain fields. A good agreement between

the observed and the calculated RSM was obtained.
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Figure 6
(a) Experimental and (b) calculated (200) RSM of a (100)-oriented YSZ
film grown on (0001) sapphire. C and D denote the coherent and diffuse
peak, respectively. (c) Crystallite thickness and (d) crystallite diameter
distributions. The average thickness is 17 nm and the square root of the
variance of the thickness distribution is 5 nm. The average diameter is
127 nm and the standard uncertainty of the diameter distribution is
18 nm. (e) Line (qx) scan performed through the centre (qz = 0) of the
(200) (upper curve) and (400) (lower curve) reciprocal-lattice points.
Grey line: experimental data, black line: model. ( f ) Plot of the lattice
disorder function "xzx versus the in-plane distance. For distances x <
17 nm, the displacements accumulate (left-hand side of the dashed line),
whereas, for x > 17 nm, the displacements do not accumulate any more
(right-hand side) and the disorder saturates to a constant value (i.e. the
strain "xz decreases).
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